skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Moore, Tadhg"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This EDI data package contains instructional materials necessary to teach Macrosystems EDDIE Module 7: Using Data to Improve Ecological Forecasts, a ~3-hour educational module for undergraduates. Ecological forecasting is an emerging approach that provides an estimate of the future state of an ecological system with uncertainty, allowing society to prepare for changes in important ecosystem services. To be useful for management, ecological forecasts need to be both accurate enough for managers to be able to rely on them for decision-making and include a representation of forecast uncertainty, so managers can properly interpret the probability of future events. To improve forecast accuracy, forecasts can be updated with observational data once they become available, a process known as data assimilation. Recent improvements in environmental sensor technology and an increase in the number of sensors deployed in ecosystems have increased the availability of data for assimilation to develop and improve forecasts for natural resource management. In this module, students will explore how assimilating data with different amounts of observation uncertainty and at different temporal frequencies affects forecasts of lake water quality, using data from the U.S. National Ecological Observatory Network (NEON). The flexible, three-part (A-B-C) structure of this module makes it adaptable to a range of student levels and course structures. There are two versions of the module: an R Shiny application which does not require students to code, and an RMarkdown version which requires students to read and alter R code to complete module activities. The R Shiny application is published to shinyapps.io and is available at the following link: https://macrosystemseddie.shinyapps.io/module7/. GitHub repositories are available for both the R Shiny (https://github.com/MacrosystemsEDDIE/module7) and RMarkdown versions (https://github.com/MacrosystemsEDDIE/module7_R) of the module, and both code repositories have been published with DOIs to Zenodo (R Shiny version at DOI 10.5281/zenodo.10903839 and RMarkdown version at DOI 10.5281/zenodo.10909589). Readers are referred to the module landing page for additional information (https://serc.carleton.edu/eddie/teaching_materials/modules/module7.html). 
    more » « less
  2. Ecological forecasting is a tool that can be used for understanding and predicting changes in populations, communities, and ecosystems. Ecological forecasting is an emerging approach which provides an estimate of the future state of an ecological system with uncertainty, allowing society to prepare for changes in important ecosystem services. Ecological forecasters develop and update forecasts using the iterative forecasting cycle, in which they make a hypothesis of how an ecological system works; embed their hypothesis in a model; and use the model to make a forecast of future conditions. When observations become available, they can assess the accuracy of their forecast, which indicates if their hypothesis is supported or needs to be updated before the next forecast is generated. In this Macrosystems EDDIE (Environmental Data-Driven Inquiry & Exploration) module, students will apply the iterative forecasting cycle to develop an ecological forecast for a National Ecological Observation Network (NEON) site. Students will use NEON data to build an ecological model that predicts primary productivity. Using their calibrated model, they will learn about the different components of a forecast with uncertainty and compare productivity forecasts among NEON sites. The overarching goal of this module is for students to learn fundamental concepts about ecological forecasting and build a forecast for a NEON site. Students will work with an R Shiny interface to visualize data, build a model, generate a forecast with uncertainty, and then compare the forecast with observations. The A-B-C structure of this module makes it flexible and adaptable to a range of student levels and course structures. This EDI data package contains instructional materials necessary to teach the module. Intructional materials (instructor manual, introductory presentation for the module, and a presentation to introduce students and instructors to R Shiny) are provided in both pdf and editable formats within a compressed file. The module R Shiny application is available at https://macrosystemseddie.shinyapps.io/module5/. Readers are referred to the module landing page for additional information (https://serc.carleton.edu/eddie/teaching_materials/modules/module5.html) and GitHub repo (https://github.com/MacrosystemsEDDIE/module5) and/or Zenodo data package (Moore et al. 2024; DOI: 10.5281/zenodo.10733117) for the R Shiny application code. 
    more » « less
  3. This EDI data package contains instructional materials necessary to teach Macrosystems EDDIE Module 6: Understanding Uncertainty in Ecological Forecasts, a ~3-hour educational module for undergraduates. Ecological forecasting is an emerging approach that provides an estimate of the future state of an ecological system with uncertainty, allowing society to prepare for changes in important ecosystem services. Forecast uncertainty is derived from multiple sources, including model parameters and driver data, among others. Knowing the uncertainty associated with a forecast enables forecast users to evaluate the forecast and make more informed decisions. This module will guide students through an exploration of the sources of uncertainty within an ecological forecast, how uncertainty can be quantified, and steps that can be taken to reduce the uncertainty in a forecast that students develop for a lake ecosystem, using data from the National Ecological Observatory Network (NEON). Students will visualize data, build a model, generate a forecast with uncertainty, and then compare the contributions of various sources of forecast uncertainty to total forecast uncertainty. The flexible, three-part (A-B-C) structure of this module makes it adaptable to a range of student levels and course structures. There are two versions of the module: an R Shiny application which does not require students to code, and an RMarkdown version which requires students to read and alter R code to complete module activities. The R Shiny application is published to shinyapps.io and is available at the following link: https://macrosystemseddie.shinyapps.io/module6/. GitHub repositories are available for both the R Shiny (https://github.com/MacrosystemsEDDIE/module6) and RMarkdown versions (https://github.com/MacrosystemsEDDIE/module6_R) of the module, and both code repositories have been published with DOIs to Zenodo (R Shiny version at https://zenodo.org/doi/10.5281/zenodo.10380759 and RMarkdown version at https://zenodo.org/doi/10.5281/zenodo.10380339). Readers are referred to the module landing page for additional information (https://serc.carleton.edu/eddie/teaching_materials/modules/module6.html). 
    more » « less
  4. Because of increased variability in populations, communities, and ecosystems due to land use and climate change, there is a pressing need to know the future state of ecological systems across space and time. Ecological forecasting is an emerging approach which provides an estimate of the future state of an ecological system with uncertainty, allowing society to preemptively prepare for fluctuations in important ecosystem services. However, forecasts must be effectively designed and communicated to those who need them to make decisions in order to realize their potential for protecting natural resources. In this module, students will explore real ecological forecast visualizations, identify ways to represent uncertainty, make management decisions using forecast visualizations, and learn decision support techniques. Lastly, students customize a forecast visualization for a specific stakeholder's decision needs. The overarching goal of this module is for students to understand how forecasts are connected to decision-making of stakeholders, or the managers, policy-makers, and other members of society who use forecasts to inform decision-making. The A-B-C structure of this module makes it flexible and adaptable to a range of student levels and course structures. This EDI data package contains instructional materials and the files necessary to teach the module. Readers are referred to the Zenodo data package (Woelmer et al. 2022; DOI: 10.5281/zenodo.7074674) for the R Shiny application code needed to run the module locally. 
    more » « less
  5. Freshwater ecosystems provide vital services, yet are facing increasing risks from global change. In particular, lake thermal dynamics have been altered around the world as a result of climate change, necessitating a predictive understanding of how climate will continue to alter lakes in the future as well as the associated uncertainty in these predictions. Numerous sources of uncertainty affect projections of future lake conditions but few are quantified, limiting the use of lake modeling projections as management tools. To quantify and evaluate the effects of two potentially important sources of uncertainty, lake model selection uncertainty and climate model selection uncertainty, we developed ensemble projections of lake thermal dynamics for a dimictic lake in New Hampshire, USA (Lake Sunapee). Our ensemble projections used four different climate models as inputs to five vertical one-dimensional (1-D) hydrodynamic lake models under three different climate change scenarios to simulate thermal metrics from 2006 to 2099. We found that almost all the lake thermal metrics modeled (surface water temperature, bottom water temperature, Schmidt stability, stratification duration, and ice cover, but not thermocline depth) are projected to change over the next century. Importantly, we found that the dominant source of uncertainty varied among the thermal metrics, as thermal metrics associated with the surface waters (surface water temperature, total ice duration) were driven primarily by climate model selection uncertainty, while metrics associated with deeper depths (bottom water temperature, stratification duration) were dominated by lake model selection uncertainty. Consequently, our results indicate that researchers generating projections of lake bottom water metrics should prioritize including multiple lake models for best capturing projection uncertainty, while those focusing on lake surface metrics should prioritize including multiple climate models. Overall, our ensemble modeling study reveals important information on how climate change will affect lake thermal properties, and also provides some of the first analyses on how climate model selection uncertainty and lake model selection uncertainty interact to affect projections of future lake dynamics. 
    more » « less
  6. Ecological forecasting is an emerging approach to estimate the future state of an ecological system with uncertainty, allowing society to better manage ecosystem services. Ecological forecasting is a core mission of the U.S. National Ecological Observatory Network (NEON) and several federal agencies, yet, to date, forecasting training has focused on graduate students, representing a gap in undergraduate ecology curricula. In response, we developed a teaching module for the Macrosystems EDDIE (Environmental Data-Driven Inquiry and Exploration; MacrosystemsEDDIE.org) educational program to introduce ecological forecasting to undergraduate students through an interactive online tool built with R Shiny. To date, we have assessed this module, “Introduction to Ecological Forecasting,” at ten universities and two conference workshops with both undergraduate and graduate students (N = 136 total) and found that the module significantly increased undergraduate students’ ability to correctly define ecological forecasting terms and identify steps in the ecological forecasting cycle. Undergraduate and graduate students who completed the module showed increased familiarity with ecological forecasts and forecast uncertainty. These results suggest that integrating ecological forecasting into undergraduate ecology curricula will enhance students’ abilities to engage and understand complex ecological concepts. 
    more » « less
  7. Abstract Water temperature, ice cover, and lake stratification are important physical properties of lakes and reservoirs that control mixing as well as bio-geo-chemical processes and thus influence the water quality. We used an ensemble of vertical one-dimensional hydrodynamic lake models driven with regional climate projections to calculate water temperature, stratification, and ice cover under the A1B emission scenario for the German drinking water reservoir Lichtenberg. We used an analysis of variance method to estimate the contributions of the considered sources of uncertainty on the ensemble output. For all simulated variables, epistemic uncertainty, which is related to the model structure, is the dominant source throughout the simulation period. Nonetheless, the calculated trends are coherent among the five models and in line with historical observations. The ensemble predicts an increase in surface water temperature of 0.34 K per decade, a lengthening of the summer stratification of 3.2 days per decade, as well as decreased probabilities of the occurrence of ice cover and winter inverse stratification by 2100. These expected changes are likely to influence the water quality of the reservoir. Similar trends are to be expected in other reservoirs and lakes in comparable regions. 
    more » « less